Vergleich berührungsloser Messmethoden mit raumzeitlicher Auflösung für das dynamische Brückenmonitoring: **Profilscanning vs. Mikrowelleninterferometrie**

Schill, Florian; Hochschule Mainz, florian.schill@hs-mainz.de Michel, Chris; KIT - Karlsruher Institut für Technologie Firus, Andrei; iSEA Tec GmbH

HOCHSCHULE MAINZ IED SCIENCES

Interner Bericht der Autobahngesellschaft

Deutschlands Brücken sind noch maroder als befürchtet

MARODE INFRASTRUKTUR WIRTSCHAFT

NACH DEM DRAMA IN GENUA

So bröseln Deutschlands

Brücken

3000 Autobahnbrücken in Deutschland teilweise in "ungenügendem Zustand"

WIRTSCHAFT LAUT AUTOBAHNGESELLSCHAFT

Mehr marode Brücken als befürchtet in Deutschland

Autobahnbrücken in Deutschland

Jede achte Brücke in schlechtem Zustand

VERKEHR

Autobahn gesperrt: Bauindustrie warnt vor "Brückenkollaps"

Motivation

- volkswirtschaftliche Schaden von Brückensperrung
 - Salzbachtalbrücke: 350.000 € pro Tag
 - Rahmedetalbrücke (A45): 1.000.000 € pro Tag
- Neubaukosten Talbrücke ~ 80.000.000 €

Motivation für berührungsloses Monitoring

- Messung von absoluten vertikalen
 Verschiebungen, liefert Information über die tatsächliche Steifigkeit der Struktur
- Längere Restnutzungsdauer?
- Aufwands-/Kostenersparnis
- Kein betreten der Struktur notwendig (Arbeitsschutz)

Motivation für den Vergleich

Es existieren für die Mikrowelleninterferometrie (keine) **wenige** (objektive bzw. nutzbare) Vergleiche mit weiterer Sensorik die die korrekte Ableitung von Verschiebungen nachweisen.

Und gleichzeitig die folgenden Randbedingungen erfüllen:

- Messungen ohne zusätzliche Elemente am Objekt (keine Reflektoren)
- Messungen mit **räumlicher** und zeitlicher **Auflösung**
- Messungen an realen (Infra-)Strukturen \bullet

Vergleich der beiden Sensoren

- Messprinzip
- Messunsicherheit
- Räumliche Auflösung
- Projektion

Messprinzip – Mikrowelleninterferometrie am Beispiel des IDS IBIS-S

- 1D-Messsystem LOS (line of sight); bis zu ~200 Hz
- Mit der Phasenmessung kann die relative Bewegung von Objekten mittels Interferometrie abgeleitet werden
- Öffnungswinkel Radarkeule: (3 dB) 15/17° bzw. (10 dB) 45/34°
- Räumliche Auflösung in Kugelschalen mit Dicke 0,75 m (bei Frequenzmodulation mit 200 MHz)

Messprinzip – Profilscanning am Beispiel des Z+F IMAGER 5016

- 2D-Messsystem; TLS im Profilmodus bis zu ~55 Hz
- Winkelmessung über Vertikalencoder; Distanzmessung über Phasenvergleichsverfahren
- Räumliche Einzelpunkt-Auflösung setzt sich zusammen aus Rotationsgeschwindigkeit und Lasermessrate
- Clustering von Messpunkten zur Verringerung der Unsicherheit
- Ableitung von absoluten Verschiebungen in vertikaler und horizontaler Richtung möglich

Messunsicherheit

Unsicherheit hängt wesentlich von der zurückreflektierten Energie und damit von den **Rückstreueigenschaften** im entsprechenden **Wellenlängenband** ab.

- Ecken, Kanten, ... eignen sich als gute Reflektoren
- 0,01–0,1 mm auf stabilen Reflektor in LOS bei SNR > 20 dB

- Wellenlänge 1500 nm
- Ecken, Kanten, ... stören aufgrund Mixed-Pixel Effekt
- 0,2 9,6 mm bei Lasermessrate 127 kHz, unterschiedliche Entfernungen und Reflexionsgrade
- Grundsätzlich gibt es gegenläufige Anforderungen der Sensoren \bullet
- Aber auch unterschiedlich "beleuchtete" Objektoberflächen

Räumliche Auflösung – IMAGER 5016

- Einzelpunktauflösung hängt ab von: Rotationsgeschwindigkeit des Spiegels und der Lasermessrate
- z. B. 55 Hz, 20.000 Punkte --> 0,018°
- Aber, die Distanzunsicherheit eines Einzelpunktes ist nicht ausreichend:
 - Mittelwertbildung über benachbarte Messpunkte
 - Reduktion der räumlichen Auflösung
- Mittelung von 82 benachbarten Messpunkten
 - ~ 55 Hz --> 1,48° bzw. 0,29 m in ~11,4 m
 Entfernung
 - ~ 14 Hz --> 0,07 m in ~11,4 m Entfernung

Räumliche Auflösung – IBIS-S

- Auflösungszellen werden durch
 Öffnungswinkel und Entfernungsauflösung
 (0,75 m) definiert
- werden anhand des Neigungswinkels des Sensors auf die Struktur projiziert
- Je größer der Neigungswinkel desto niedriger ist die räumliche Auflösung
 - Bei 26° --> bis zu 1,0 m
 - Bei 44° --> bis zu 1,4 m

- Öffnungswinkel 15/17° bzw. 45/34°
- In 10 m hat die Radarkeule eine Breite von 3 m/6 m
- Risiko, dass sich mehrere Reflektoren innerhalb einer Auflösungszelle befinden
- Besonders bei unterschiedlichem
 Deformationsverhalten problematisch

w. 45/34° eine Breite

eflektoren zelle befinden lichem oblematisch

main lobe

Räumliche Auflösung – IBIS-S

Projektion – IBIS-S - eine Verschiebungskomponente

- 1D-Messsystem --> LOS Distanzänderungen
- Unter der Annahme: nur einer Verschiebungskomponente (vertikal)
- Projektion in Vertikalrichtung, setzt sich zusammen:
 - Neigungswinkel des Radarkopfes _
 - Position innerhalb der Radarkeule
- Vereinfachung auf 2D-Fall: $v = \frac{\Delta r LOS \cdot R}{r}$

Unsicherheiten in $\Delta rLOS$, R und h führen zu Projektionsfehlern:

Berührungslose Überwachung an einer Eisenbahnbrücke

Untersuchungsobjekt

- Urmitzer Eisenbahnbrücke über den Rhein
- Zweigleisige Fachwerkbrücke
- Baujahr 1916 bzw. 1953
- Messungen an einem Feld
- Auf der Südseite der Brücke
- Mit einer Spannweite von ca. 82 m

Untersuchungsobjekt

- Urmitzer Eisenbahnbrücke über den Rhein
- Zweigleisige Fachwerkbrücke
- Baujahr 1916 bzw. 1953
- Messungen an einem Feld
- Auf der Südseite der Brücke
- Mit einer Spannweite von ca. 82 m

Messkonfigurationen

Ziel bei allen Konfigurationen war der sechste Querträger

- Setup 1: senkrecht, keine räumliche Auflösung
- Setup 2: Neigungswinkel ~45 Grad, Auswertebereich horizontal ~20 m
- Setup 3: Neigungswinkel ~26 Grad, Auswertebereich bis Strompfeiler

Setup 1 – Querträger 6

/23

Setup 1 – Querträger 6

Setup 2 – Querträger 6

Ziel bei allen Konfigurationen war der sechste Querträger

- Setup 1: senkrecht
- Setup 2: Neigungswinkel ~45 Grad
- Setup 3: Neigungswinkel ~26 Grad

Setup 3 – Querträger 6

Ziel bei allen Konfigurationen war der sechste Querträger

- Setup 1: senkrecht
- Setup 2: Neigungswinkel ~45 Grad
- Setup 3: Neigungswinkel ~26 Grad

Setup 3 – Querträger 4 und 5

Projektion – IBIS-S - mehrere Verschiebungskomponenten

- 1D-Messsystem --> LOS Distanzänderungen
- Unter der Annahme: nur eine Verschiebungskomponente (vertikal)
- Projektion in Vertikalrichtung, setzt sich zusammen:
 - Neigungswinkel des Radarkopfes
 - Position innerhalb der Radarkeule
 - Horizontalverschiebung

- Ein IBIS-S nicht mehr ausreichend
- 2 oder mehr Sensoren notwendig
 --> 2D-Projektion

ichend wendig

Setup 3 – Querträger 4

Setup 3 – Querträger 5

Fazit	Mikrowelleninterferometer	Prof
Messunsicherheit	< 0,1 mm in LOS	> 0,1 mm gecl
Projektion	Problematisch, Gefahr für systematische Fehler	i
Mehrere Verschiebungs- komponenten	Nicht trennbar	Horizontal/V entspreche
Messbereich		
Räumliche Auflösung		
Synchronisierung		
Stand-Alone Einsatz		

filscanning

lustert und projiziert

nhärent

/ertikal trennbar bei ender Geometrie

Fazit	Mikrowelleninterferometer	Prof
Messunsicherheit	< 0,1 mm in LOS	> 0,1 mm gecl
Projektion	Problematisch, Gefahr für systematische Fehler	ir
Mehrere Verschiebungs- komponenten	Nicht trennbar	Horizontal/Ve entspreche
Messbereich	Footprint Radarkeule, einseitig von Sensor aus	Gesamtes I Auftreffv
Räumliche Auflösung	fix; mindestens 0,75 m	frei wählbar, Rotations
Synchronisierung		

Stand-Alone Einsatz

filscanning

lustert und projiziert

nhärent

'ertikal trennbar bei ender Geometrie

Profil; aber durch winkel begrenzt

, aber abhängig von sgeschwindigkeit

Fazit	Mikrowelleninterferometer	Pro
Messunsicherheit	≤ 0,1 mm in LOS	≥ 0,1 mm gec
Projektion	Problematisch, Gefahr für systematische Fehler	i
Mehrere Verschiebungs- komponenten	Nicht trennbar	Horizontal/V entsprech
Messbereich	Footprint Radarkeule, einseitig von Sensor aus	Gesamtes Auftreffy
Räumliche Auflösung	fix; mindestens 0,75 m	frei wählbar, Rotations
Synchronisierung	Nur über Messungen	Hochgenau
Stand-Alone Einsatz	Nur mit viel Vorwissen über Strukturantwort	Üblicherv

filscanning

clustert und projiziert

inhärent

- /ertikal trennbar bei iender Geometrie
- Profil; aber durch winkel begrenzt
- , aber abhängig von sgeschwindigkeit
- er GPS-Zeitstempel

weise problemlos

Schill, F.; Michel, C.; Firus, A. Contactless Deformation Monitoring of Bridges with Spatio-Temporal Resolution: Profile Scanning and Microwave Interferometry. Sensors 2022, 22, 9562. https://doi.org/10.3390/s22239562

